

Safe Routes to School & Green Streets Infrastructure Pilot Program Call for Projects Workshop

> Matthew Fabry, P.E. Program Manager

San Mateo Countywide Water Pollution Prevention Program

San Mateo Main Library Aug 3, 2017

SAN MATEO COUNTYWIDE Water Pollution Prevention Program

Clean Water. Healthy Community. www.flowstobay.org

Healthy Kids • Green Communities • Safe Journeys

Agenda

- Background on Safe Routes to School and Countywide Water Pollution Prevention Programs
- SRTS/Green Streets Infrastructure Call for Projects
 - Application Requirements
 - Scoring Criteria
 - Schedule
- Questions/Discussion

Safe Routes to School Program

The Safe Routes to School Program, a joint partnership between C/CAG and the San Mateo County Office of Education, encourages and enables school children to walk and bicycle to school by implementing projects and activities that improve the health, well-being, and safety of children, and which result in less traffic congestion and emissions caused by school-related travel.

San Mateo Countywide Water Pollution Prevention Program

A program of C/CAG, the San Mateo Countywide Water Pollution Prevention Program (SMCWPPP) was established to reduce the water pollution carried by stormwater into local creeks, the San Francisco Bay, and the Pacific Ocean. Water pollution degrades surface waters making them unsafe for drinking, fishing, swimming, and other activities.

Traffic

 Up to 15% of morning commute traffic in San Mateo County can be attributed to school related traffic

Air Quality

 Poor air quality increases respiratory ailments like asthma and bronchitis, heightens the risk of cancer, and burdens our health care system

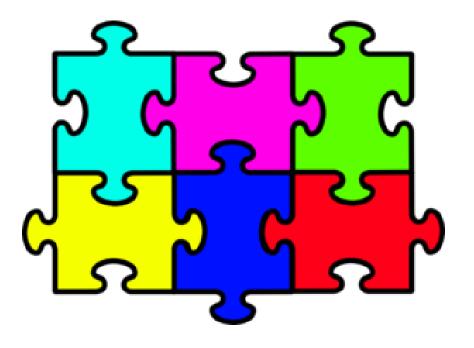
65% of parents in San Mateo County attribute unsafe intersections as a primary reason not to allow children walking/biking to school

Source: San Mateo County Safe Routes to School 5-Year Evaluation, 2016

The 7 E's of SRTS

Education

Encouragement


Engineering

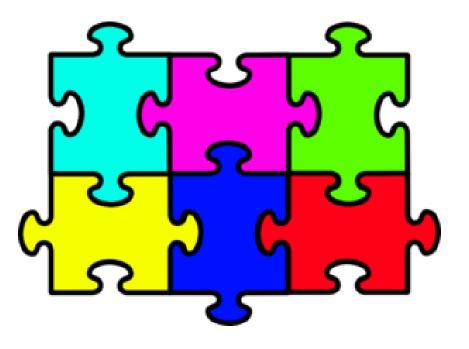
Enforcement

Evaluation

Equity

Engagement

The 7 E's of SRTS


Education

Encouragement Engineering Enforcement

Evaluation

Equity

Engagement

Safe Routes to School

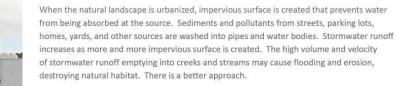
Safe Routes to School

Stormwater – What's the Big Deal?

- Urbanization = hard surfaces and pollutants
- Rain washes pollutants away
- Flows into inlets and underground pipes
- Discharge directly to creeks, the Bay, or ocean
- No treatment to remove any pollutants
- Impacts water quality and aquatic life

1.2 Pre-Urban Development A Healthy Landscape

A healthy, undisturbed landscape acts like a sponge by capturing, absorbing, and slowing the flow of water from the moment a raindrop lands on the ground. Urban development, though, has dramatically impacted natural hydrologic systems by reducing the landscape's absorptive capacity and introducing pollutants.


20% Interflow

40% Infiltration

10% Surface Flow

30% Evapotranspiration

1.3 Urban Development The Effects of Impervious Area

What Pollutants?

- Trash/Litter
- Pesticides
- Nutrients/Fertilizers
- Mercury
- PCBs
- Construction
 Materials

- Vehicle-Related
 - Metals
 - Oil/Hydrocarbons
 - Washwater
- Bacteria
 - Pet waste, livestock,
 - sewer, etc.
- Flow

The Municipal Regional Permit

- Issued by SF Bay Regional Water Board
- 76 municipal permittees
 - San Mateo, Santa Clara, Alameda, Contra Costa Counties, Cities of Fairfield, Suisun City, Vallejo
- Addresses full spectrum of stormwater issues
 - Municipal, commercial, construction
 - Monitoring, outreach
 - New & Redevelopment
 - Pollutants of concern

.4 Balanced Development

Infrastructure can be designed to minimize its impact on natural drainage systems. Our streets and parking lots can help maintain the balance of natural drainage systems by capturing, slowing, and absorbing stormwater, as well as filtering the pollutants that urban development introduces. Green infrastructure such as green streets, green parking lots, and green roofs helps increase the time it takes stormwater runoff to flow downstream and distributes the volume of water entering into creeks over a longer period of time, thereby decreasing flooding and reducing the erosive forces of the water.

> 35% Surface Flow

10% Interflow

20% Evapotranspiration

35% Infiltration

Green Infrastructure Planning

- Each agency must adopt GI Plan by 2019
- Describe gradual shift from gray to green
- Achieve specific pollutant load reduction via green infrastructure by 2020 & 2040
- Current Call for Projects intended to help support local GI planning efforts and load reduction requirements

Stormwater Resource Plan

- C/CAG developed a Countywide Stormwater Resource Plan - adopted in February 2017
- SRP looked at recommended infrastructure improvements from existing SRTS walk audits
- Developed green street project concepts, including several to support SRTS

	Site Information	
	Jurisdiction	City of Foster City
	Street Name	Beach Park Blvd
	Bounding Streets	Foster City Blvd / Marlin St
	Street Typology	Arterial
100 Car	Co-located Project	Safe Routes to School
MAC	Capture Area (acres)	7.10
20	Impervious Area (%)	90
-	85 th Percentile Rainfall (in)	0.85
nCrossing	Generated Runoff (ac-ft)	0.45

Site Description:

The proposed project consists of green street improvements along Beach Park Boulevard between Swordfish Street and Tarpon Street. Additionally, green infrastructure will be implemented along the first blocks of Swordfish and Tarpon Street from Beach Park Boulevard. The total street length is approximately 2,500 feet. Beach Park Boulevard is an arterial street with pedestrian crossings at intersecting low-density residential streets. Bioretention at pedestrian crossings are recommended as the primary treatment type. Bulb-outs at five pedestrian crossings along Beach Park Boulevard are proposed, along with two additional school crossings on Tarpon Street and Swordfish Street. This project will integrate with the Safe Routes to School Program at Bowditch Middle School. The bulb-outs would improve safety by narrowing the crossing distance at each intersection and increasing visibility of pedestrians.

The proposed improvements would capture 100% of the 85th percentile runoff volume (0.45 ac-ft) while providing flood risk mitigation, community enhancement, increased property values, safer pedestrian routes, and other multiple benefits.

DISCLAIMER: All elements of this conceptual design are planning-level. Locations of opportunities for placement of green infrastructure shown in the map are preliminary and subject to further site assessment and design. Percent imperviousness is based on best professional iudgement. All design assumptions/parameters and cost estimates must be re-evaluated during the detailed design process.

		Design Summary					
	Task Val	Green Infrastructure Type	Design Width (ft)	Design L	ength (ft) 🛛 🤇	Capture Volu	me (ac-ft)
Holing T		Bioretention (Curb Extension)	8	1	,300	0.45	D
111 50		Cost Estimate					
11/2011 2000		DESCRIPTION	QUANTITY	UNIT	UNIT COST	TOTAL	
A A A A A A A A A A A A A A A A A A A		Excavation/Hauling	1,950	CY	\$50	.00	\$98,000
	Legend	Bioretention	10,400	SF	\$25	.00	\$260,000
Chan II	Curb Extension	Curbs and Gutters	1,300	LF	\$17	.25	\$22,000
Na Na	Drainage Area			CONSTRU	CTION SUBTOT	TAL	\$380,000
	0 200 400 600 800 ft	Planning (20%), Mobilization (10%), Design (30%), Contingency (25%)					\$323,000
Google	a rerms of use keport a map error				TOTAL CO	DST	\$703,000
Concept for a Green Street Retrofit for Stormwater Capture				\approx			
Site: Beach Park Boulevard (City of Foster City)			Water Pollution Prevention Program	PAR	DIGM		

Source: San Mateo Countywide Stormwater Resource Plan, 2017

Kennedy Middle School	Site Information			
Green Street Project	Jurisdiction	City of Redwood City		
NORTH CLEAN AND I BALLER	Street Name	Goodwin Ave & Connecticut		
	Street Typology	High-Density Residential		
	Co-Located Project	Safe Routes to School		
	Capture Area (acres)	3.32		
	Impervious Area (%)	90		
Kennedy Middle Sch	85 th Percentile Rainfall (i	n) 0.85		
	Generated Runoff (ac-ft)	0.21		
	Legend Curb Extension Drainage Area 0 75 150 225 300 ft	tension with Curb Cut		
Site Description:	Design Summary			
The proposed project consists of green street improvements along Connecticut Drive between Goodwin Avenue and Washington Avenue, and the intersection of Goodwin Avenue and Alameda de las Pulgas. The site is characterized by high-density residential	Green Infrastructure Type Design Width (ft)	Design Capture Volume Length (ft) (ac-ft)		
streets that border the John F. Kennedy Middle School. Curb extensions are recommended	Bioretention (Curb Extension) 12	405 0.210		
as the primary treatment type. This project will integrate with the Safe Routes to School Program to implement green infrastructure that will also improve pedestrian safety. Curb	Cost Estimate			
extensions are proposed at crosswalks to improve pedestrian visibility and decrease crossing	DESCRIPTION QUANTITY	UNIT UNIT COST TOTAL		
distance. The project also presents an opportunity for public education and signage can be implemented to inform the public on the benefits of green infrastructure.	Excavation/Hauling 900	CY \$50.00 \$45,0		
implemented to inform the public on the benefits of green infrastructure.	Bioretention 4,860	SF \$25.00 \$122,0		
The proposed improvements would capture 100% of the 85 th percentile runoff volume (0.21	Curbs and Gutters 405	LF \$17.25 \$7.0		
ac-ft) while providing flood risk mitigation, community enhancement, increased property values, safer pedestrian routes, and other multiple benefits.				
DISCLAIMER: All elements of this conceptual design are planning-level. Locations of opportunities for placement of	CONSTRUCTION SUBTOTAL \$174,000 Planning (20%), Mobilization (10%), Design (30%), Contingency (25%) \$148,000			
green infrastructure shown in the map are preliminary and subject to further site assessment and design. Percent imperviousness is based on best professional judgement. All design assumptions/parameters and cost estimates must	Planning (20%), Mobilization (10%), Design (30%), Contingency (25%) TOTAL COST			
be re-evaluated during the detailed design process.	TOTAL COST			
Concept for a Green Street Retrofit for Stormwat	ter Canture	≈		

Source: San Mateo Countywide Stormwater Resource Plan, 2017

Site Information	
Jurisdiction	City of Millbrae
Street Name	San Anselmo Ave
Bounding Streets	Santa Helena Ave / Landing Ln
Street Typology	High-Density Residential
Co-Located Project	Safe Routes to School – Lomita Park Elementary
Capture Area (acres)	3.68
Impervious Area (%)	65
85th Percentile Rainfall (in)	0.90
Generated Runoff (ac-ft)	0.3

Site Description:

The proposed project consists of green street improvements along San Anselmo Avenue between Santa Helena Avenue and Landing Lane and San Juan Avenue between San Anselmo and El Camino Real. The total street length is 1,150 feet. The site is considered high-density residential with limited space for parking. Curb extensions are recommended as the primary treatment type and must be placed to minimize loss of parking. Bulb-outs at the San Anselmo-San Juan pedestrian crossings will be implemented for stormwater capture and will integrate with the Safe Routes to School Program at the Lomita Park Elementary School.

The proposed improvements would capture a total of 0.27 acre-feet while providing flood risk mitigation, community enhancement, increased property values, safer pedestrian routes, and other multiple benefits.

DISCLAIMER: All elements of this conceptual design are planning-level. Locations of opportunities for placement of green infrastructure shown in the map are preliminary and subject to further site assessment and design. Percent imperviousness is based on best professional judgement. All design assumptions/parameters and cost estimates must be re-evaluated during the detailed design process.

Design Summary

Green Infrastructure Type	Design Width (ft)	Design Length (ft) 1,740		Capture Volume (ac-ft) 0.30	
Bioretention (Curb Extension)	4				
Cost Estimate					
DESCRIPTION	QUANTITY	UNIT	UNIT COST		TOTAL
Excavation/Hauling	1,290	CY	\$50.00		\$65,000
Bioretention	6,960	SF	\$25.00		\$174,000
Curbs and Gutters	1,740	LF	\$1	7.25	\$30,000
	CO	NSTRUC	TION SUBTO	TAL	\$269,000
Planning (20%), Mobilization (10%), Design (30%), Co	ntingenc	y (25%)		\$229,000
			TOTAL CO	DST	\$498,000

Concept for a Green Street Retrofit for Stormwater Capture Site: San Anselmo Avenue (City of Millbrae)

Source: San Mateo Countywide Stormwater Resource Plan, 2017

SRTS & Green Streets Infrastructure Call for Projects

The primary goal of this pilot program is to demonstrate that green infrastructure can be cost-effectively integrated with traditional Safe Routes to School infrastructure projects to enhance safety and achieve stormwater pollutant reductions.

Project Funding

- Up to \$2 million available for local assistance
 - Equal funding from local vehicle registration fees for SRTS and Countywide Stormwater Pollution Reduction
 - 15% local cash match required
 - Only construction costs are reimbursable
 - \$100,000 \$250,000 per project (2 project limit per jurisdiction = \$500,000 total)

ater, Healthy Community

Eligible Applicants

 Local governments (cities, towns and the County) in San Mateo County

Eligible Projects

- Infrastructure only (e.g. planning and educational programs are ineligible)
- Included in Walk Audit or Pedestrian/Bike
 Plan or located within a ½ mile radius of a school with adequate justification
- Located at intersections or mid-block crossings
- Balanced cost share between SRTS and stormwater (60/40 split, maximum)

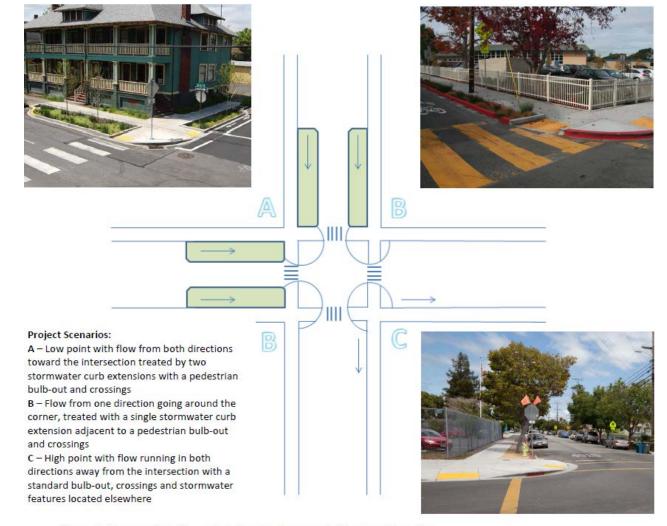


Figure 1. Diagram of eligible project elements at an example four-way intersection

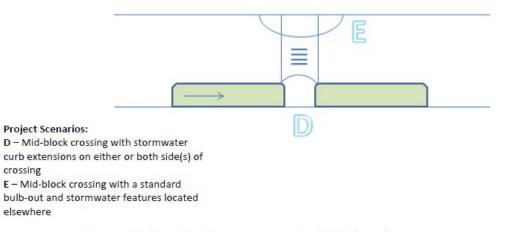


Figure 2. Diagram of eligible project elements at an example mid-block crossing

Typical Project Components

- Stormwater curb extensions
- Traditional curb extensions
- Interpretive signs
- Pedestrian bulb-outs/curb ramps
- Pedestrian striping/crosswalks

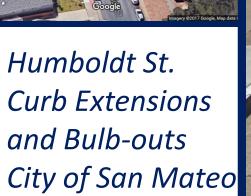
- Lighting
- Rectangular Rapid Flashing Beacons (RRFB)
- Signage
- Illuminated Crosswalks

Typical Project Components

- Stormwater curb extensions
- Traditional curb extensions
- Interpretive signs
- Pedestrian bulb-outs/curb ramps

- Lighting
- Rectangular Rapid Flashing Beacons (RRFB)
- Signage
- Illuminated Crosswalks

SAN MATED COUNTYWIDE Water Pollution Prevention Program Clean Water, Healthy Community.


Pedestrian striping/crosswalks

MUST SHOW BALANCED COST SHARE

Humboldt St. Curb Extensions and Bulb-outs City of San Mateo

Old County Rd. Curb Extensions City of San Carlos

Old County Rd. Curb Extensions City of San Carlos

Hillside Blvd Curb Extensions Town of Colma

Hillside Blvd Curb Extensions Town of Colma

N Delaware St & Monte

Delaware St Curb Extensions City of San Mateo

Application Requirements

- Letter of support from School District
- Map of project area and land use information
- Project schematic or conceptual design, with stormwater feature sizing calculations and drainage delineation
- Description of planned operations and maintenance activities (including responsible parties)
- Scope of work, budget, and schedule
- Estimated cost breakdown between components
- Minimum local match of 15% of total capital costs

Example Cost Breakdown Table

Example Cost Dieakdown Table									
Construction Element	SRTS/GI/Both	Quantity	Unit	Unit Cost	Cost	GI/Both Cost	SRTS/Both Cost	Percent GI Cost	Percent SRTS Cost
Roadway excavation	Both	110	СҮ	\$20	\$2,200	\$1,100	\$1,100	47%	53%
Concrete Removal (sidewalk)	SRTS	620	SF	\$20	\$12,400	\$0	\$12,400		
Concrete Removal (curb and gutter)	GI	180	LF	\$45	\$8,100	\$8,100	\$0		
Minor Concrete (sidewalk)	SRTS	220	SF	\$6	\$1,320	\$0	\$1,320		
Minor Concrete (curb and gutter)	Both	200	LF	\$45	\$9,000	\$4,500	\$4,500		
Minor Concrete (tack on curb)	GI	20	LF	\$20	\$400	\$400	\$0		
Minor Concrete (valley gutter)	GI	110	SF	\$50	\$5,500	\$5,500	\$0		
Minor Concrete (curb ramp)	SRTS	2	EA	\$3,000	\$6,000	\$0	\$6,000		
Minor Concrete (retaining curb)	GI	125	LF	\$30	\$3,750	\$3,750	\$0	I	
Curb Ramp Detectable Warning Surface	SRTS	2	EA	\$500	\$1,000	\$0	\$1,000	Ī	
Hot Mix Asphalt (Type A)	Both	35	TON	\$100	\$3,500	\$1,750	\$1,750	Ī	
Mounted Curb System	Both	70	LF	\$50	\$3,500	\$1,750	\$1,750		
Curb Opening Catch Basin	GI	1	EA	\$5,000	\$5,000	\$5,000	\$0		
Area Drain	GI	0	EA	\$2,500	\$0	\$0	\$0	I	
Modify Existing Storm Drain System	GI	1	EA	\$5,000	\$5,000	\$5,000	\$0	Ī	
Metal Checkdam/Weir	GI	9	EA	\$100	\$900	\$900	\$0	Ī	
4" PVC Underdrain System	GI	120	LF	\$25	\$3,000	\$3,000	\$0		
Sormwter Facility Soil Excavation	GI	40	СҮ	\$20	\$800	\$800			
Stormwater Facility Soil Import and Prep (with underdrain)	GI	40	СҮ	\$45	\$1,800	\$1,800	\$0		
Landscape Area Soil Import and Prep	GI	2	СҮ	\$35	\$70	\$70	\$0	Ι	
1 gallon plants	GI	200	EA	\$20	\$4,000	\$4,000	\$0		
Irrigation	GI	540	SF	\$2	\$1,080	\$1,080	\$0		
Moisture Barrier	Gl	400	LF	\$10	\$4,000	\$4,000	\$0]	
Signing and Striping	SRTS	1	LS	\$1,500	\$1,500	\$0	\$1,500]	
Contingency	Both				\$8,382	\$4,191	\$4,191]	
Total					\$92,202	\$56,691	\$35,511		

*GI/Both and SRTS/Both columns include GI and SRTS costs respectively with 1/2 of "Both" costs distributed equally to each category

Additional Scoring Criteria

- Additional community letters of support
- Integration of educational signage
- Benefitting schools that participate in SRTS or are practicing SRTS initiatives
- Address localized drainage or flooding issues
- Readiness to proceed
- Identified in other local or countywide plans (bike/ped master plans, complete/sustainable streets plans, community-based transportation plans, etc.)

Scoring Criteria

Evaluation Criteria	Description	Max Points
Existing Conditions	The project addresses site-specific SRTS and stormwater management needs and demonstrates the benefits of integrating transportation/pedestrian road improvements with green infrastructure for stormwater management.	25
Proposed Project	Project has a well-defined scope of work and identifies the key purpose and objectives.	30
Project Timeline and Budget	Preliminary timeline and budget, including an estimated cost breakdown for SRTS and stormwater elements	20
School and Community Support	Project demonstrates meaningful community support from the benefitting school district, school(s) and other community stakeholders.	25
Total		100

C/CAG Call For Projects Webpage

- Call for Projects Materials + Additional Resources
 - Google Street View Maps of example projects in SMC
 - List of Walk Audit SRTS Improvements from SRP
 - Pedestrian and Bicycle Design Resource Guide
 - Relevant C.3 Technical Guidance Sections (O&M, Sizing, Soil)
 - Sustainable Green Streets and Parking Lots Design Book
 - Bay Area Urban Greening Intersection Typical Details
 - SFPUC Green Infrastructure Typical Details

http://ccag.ca.gov/opportunities/call-for-projects/

Schedule (tentative)

- C/CAG Board approved CFP July 13
- Released call for projects July 18
- Workshop August 3
- Applications due October 20
- Selection panel review late October
- C/CAG Committees November
- C/CAG Board December
- Projects completed October 2019

TDA Article 3 Call For Projects

- Cities may want to consider whether TDA Article 3 proposals under C/CAG's recent call are also appropriate for this call (may require modifying projects to incorporate stormwater features)
- Successful TDA proposals could be withdrawn from consideration under this call, as needed

Questions/Discussion?

Stormwater

Matthew Fabry, Program Manager (650) 599-1419, <u>mfabry@smcgov.orq</u> Reid Bogert, Stormwater Program Specialist (650) 599-1433, <u>rbogert@smcgov.org</u>

Safe Routes to Schools

John Hoang, Program Manager 650-363-4105, <u>jhoang@smcgov.org</u> Sara Muse, Transportation Programs Specialist 650-599-1460, <u>smuse@smcgov.org</u>

Healthy Kids • Green Communities • Safe Journeys

