

Storm Water Resource Plan

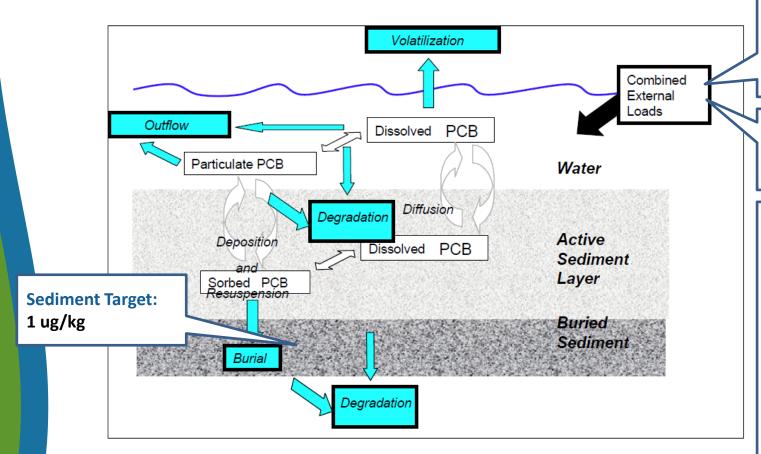
Stephen Carter, P.E.
Task Lead

Paradigm Environmental

C/CAG Stormwater Committee
June 16, 2016

Overview of Concepts

Final Steps for Storm Water Resource Plan


- June
 - Complete Draft Concept Plans for C/CAG review
 - Finalize Concept Plans
 - Prepare Prop 1 Grant Proposal (based on subset of project concepts)
- July-August
 - Prepare Draft Storm Water Resource Plan for C/CAG review
 - Finalize Storm Water Resource Plan

Reasonable Assurance Analysis

- Permittees shall prepare a reasonable assurance analysis that demonstrates how green infrastructure will be implemented in order to achieve a PCBs load reduction of 3 kg/yr across the permit-area by 2040 (C.12.c.ii(2)).
- Permittees shall prepare a plan and schedule for PCBs control measure implementation and reasonable assurance analysis demonstrating that sufficient control measures will be implemented to attain the PCBs TMDL wasteload allocations by 2030 (C.12.d.i).

San Francisco Bay PCBs TMDL

Wasteload Allocation:

- 1 ug/kg
- 2M tons sediment/yr
- = 2 kg/yr

Existing Load:

- 20 kg/yr
- 90% load reduction

Provision C.12.c

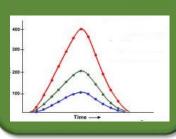
- 120 g/yr reduction during each of final 3 yrs of permit (0.6% reduction)
- 3 kg/yr reduction by 2040 via green infrastructure (15% reduction)
- Reporting of progress by 2020, 2030, and 2040

Initial Phase of RAA

<u>Update</u>: Calibrate to meet RAA guidelines (hydrology and sediment/PCB/Hg transport)

Builds off of system developed during Stormwater Resource Planning

HSPF/LSPC


Data

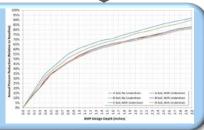
- Rainfall
- HRUs/Land Use
- Impervious
- Elevation
- Slopes
- Evaporation
- Infiltration

Watershed Model

Update Results Hourly Runoff and sediment/pollutant loads Critical Period (TBD)

SUSTAIN

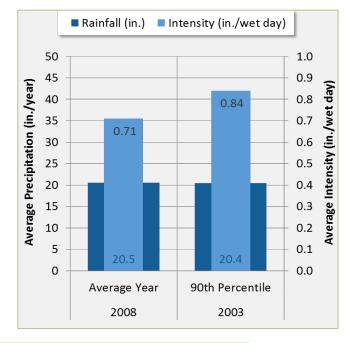
Stormwater Capture Model



Calculation of project capture volumes

WAMP
GIS tool to
provide user
interface

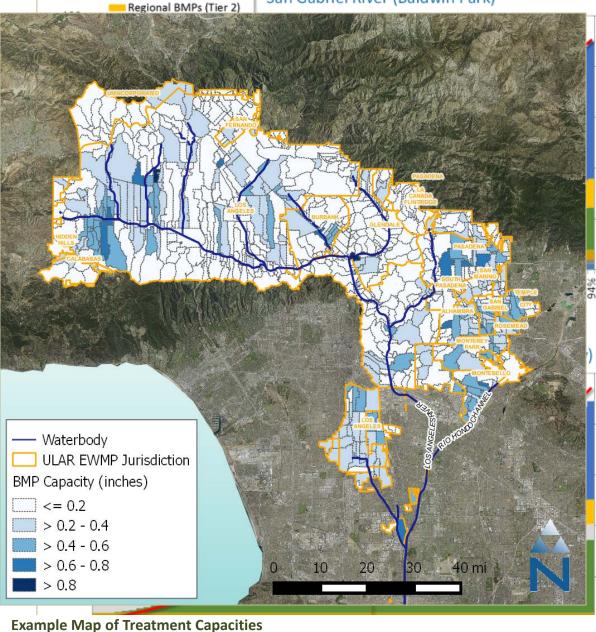
GI Response Curves



Determine Hg/PCBs Wasteload Allocations

Watershed model provides the ability to recalculate the SMC wasteload allocations

- Improved estimate of sediment loading (basis of allocation)
- Assessment of critical period
- Incorporation of local Hg/PCBs concentrations



1	2	3	4	5 = 2 X 3	6 = 2 X 4	7 = 6 - 5
Period Used	Avg.	Target	Existing PCBs	PCBs	Existing	Load
to Base Avg.	Annual	Sediment	Sediment	Wasteload	PCBs Load	Reduction
Annual Load	Sediment	Concentration	Concentration	Allocation	(kg/yr)	(kg/yr)
	Load	(μg/kg	(μg/kg	(kg/yr)		
	(tons/yr)	sediment)	sediment)			
2003-2005	2 million	1.0	10.0	2.0	20.0	18.0

Perform Reasonable Assurance Analyses

- Quantitative relationship between GI implementation and Hg/PCBs reduction
- Optimization to ensure costeffective planning
- Separate analyses performed for each jurisdiction

San Gabriel River (Baldwin Park)

Regional BMPs (private)

50% 55% 55% 55% 71% 71% 71% 88% 88% 88%

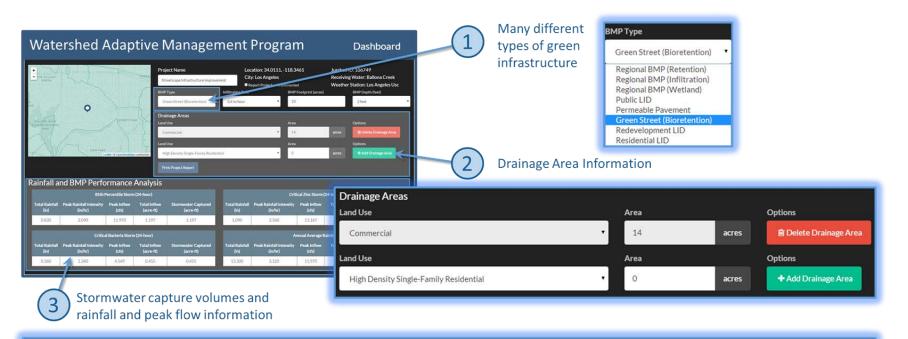

Perform Reasonable Assurance Analyses

Table 1. Example RAA Output - City of Long Beach Toxics TMDL (including PCBs)

		TM	1DL Targe	t				Treatme	nt Capac	ities		
nent Area		Reter Volu (acre-ft	ıme	e	Exist Planne	•	Pul	olic LID	Green	Streets	Region	nal BMPs
TMDL Assessment Area	Future Year	Incremental	Cumulative	Milestone	Incremental (ac-ft)	Cumulative (ac-ft)	Incremental (ac-ft)	Cumulative (ac-ft)	Incremental (ac-ft)	Cumulative (ac-ft)	Incremental (ac-ft)	Cumulative (ac-ft)
Harbor	2019	1.0	1.0	10%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Toxics	2024	77.7	78.7	20%	6.6	6.6	5.6	5.6	0.0	0.0	0.0	0.0
TMDL	2032	1,649.0	1,728	100%	26.1	32.7	38.1	43.7	24.7	24.7	234.1	234.1
Domin	2019	0.1	0.1	10%			0.0	0.0	0.0	0.0	0.0	0.0
-guez	2024	17.7	17.7	20%			2.1	2.1	0.0	0.0	0.0	0.0
Toxics TMDL	2032	66.9	84.7	100%			5.8	7.9	0.9	0.9	2.1	2.1

Watershed Adaptive Management Program (WAMP)

	85th P	ercentile Storm	(24-hour)		Critical Zinc Storm (24-hour)				
Total Rainfall (in)	Peak Rainfall Intensity (in/hr)	Peak Inflow (cfs)	Total Inflow (acre-ft)	Stormwater Captured (acre-ft)	Total Rainfall (in)	Peak Rainfall Intensity (in/hr)	Peak Inflow (cfs)	Total Inflow (acre-ft)	Stormwater Captured (acre-ft)
0.830	2.090	11.970	1.197	1.197	1.090	2.560	13.167	1.317	1.317
								otosoli.	
	Critica	l Bacteria Storn	n (24-hour)			Ar	nnual Average R	aintali	
Total Rainfall (in)	Critica Peak Rainfall Intensity (in/hr)	l Bacteria Storn Peak Inflow (cfs)	n (24-hour) Total Inflow (acre-ft)	Stormwater Captured (acre-ft)	Total Rainfall (in)	Ar Peak Rainfall Intensity (in/hr)	nual Average R Peak Inflow (cfs)	Total Inflow (acre-ft)	Stormwater Captured (acre-ft)

Final Products for FY 16/17

- Refinement of County PCBs/mercury reductions required to meet phased TMDL implementation
- Stormwater/sediment capture goals for the Green Infrastructure
 Plan
 - Jurisdictional goals
 - Watershed goals
- Watershed Adaptive Management Program
 - Web-based model tool to support GI planning and identification/accounting of projects to meet goals
- Begin development of accounting methodology for other control measures
 - Trash Capture
 - PCBs in building materials and infrastructure

